
Degenerate enveloping algebras of SU(3), SO(5), G2 and SU(4)

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1984 J. Phys. A: Math. Gen. 17 715

(http://iopscience.iop.org/0305-4470/17/4/013)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 07:57

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/17/4
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J.  Phys. A: Math. Gen. 17 (1984) 715-725. Printed in Great Britain 

Degenerate enveloping algebras of SU(3), S 0 ( 5 ) ,  G ,  and 
SU(4)t 

Y Girouxf, M Couture§ and R T Sharpf 
$ Physics Department, McGill University, Montreal, Canada 
5 Theoretical Physics Division, Atomic Energy CO of Canada Ltd, Chalk River, Canada 

Received 13 June 1983 

Abstract. When they act on states of degenerate representations (for which one or more 
representation labels vanish) the generators of a simple group are no longer independent. 
Polynomial relations between them are conveniently interpreted as the vanishing of certain 
group tensors in the enveloping algebra. It turns out that the number of linearly independent 
A-tensors in the degenerate enveloping algebra is equal to the number of H X U(1) X . . . X 

U ( 1 )  scalars in the irreducible representation A, where H is the subgroup whose Dynkin 
diagram is that corresponding to the vanishing labels and the U( 1)  subgroups correspond 
to the directions in weight space perpendicular to  the hyperplane of H. Using generating 
function techniques we investigate the phenomenon for SU(3), S 0 ( 5 ) ,  G,  and SU(4) .  The 
consequences for subgroup labelling operators are  discussed. 

1. Introduction 

In applications of group theory to physical problems one is often interested only in 
degenerate representations of the relevant group, i.e. representations for which one 
or more representation labels vanish. Examples are ( A  1, 0) representations of SO( 5) 
for nuclear quadrupole vibrations, ( A  1, 0,O) representations of SO( 7) for octupole 
vibrations, ( A l ,  0 , .  . . , 0) representations of SU( n)  for the n-dimensional isotropic 
oscillator. In this paper we investigate the enveloping algebra (polynomials in the 
generators) acting on (states of) degenerate representations of a simple group; the 
generators are then no longer independent, but satisfy polynomial relations, or syzygies, 
in addition to the commutation relations. 

Generating function methods provide a convenient vehicle for discussing the 
enveloping algebra, whether acting on general or degenerate representations. Recently 
two of us (Couture and Sharp 1980; we refer to this paper hereafter as I) gave a 
generating function for irreducible tensors in the enveloping algebra of each simple 
group of rank three or less. The generating function is a rational function % of 1 + 1 
dummy variables U, A , ,  . . , A t  where 1 is the rank of the group. When expanded in a 
power series, 

the generating function yields, as the coefficient cuA, the number of linearly independent 
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tensors of degree U which transform by the representation A = ( A l 7 .  . . , A I ) .  The 
Dynkin, or Cartan, label A,  is defined by 

A,  = 2 ( M  I a,)/(., la,), (1.2) 

where MA is the highest weight of the represntation A,  and a, is the ith simple root. 
The generating function suggests a finite integrity basis, a finite set of ‘elementary’ 
tensors in terms of which all can be constructed as stretched products. 

The syzygies which relate the generators acting on degenerate representations are 
best viewed as the vanishing of certain tensors in the enveloping algebra. The simpler 
form take by the enveloping algebra is conveniently described by presenting the 
degenerate form of its generating function. 

In this paper we follow Kostant (1963) and Okubo (1975) in defining linear 
independence of tensors in terms of the linear independence of the matrices which 
represent them when they act on the (degenerate) representations under consideration; 
this is equivalent to the statement that we ignore group Casimir invariants. 

In § 2 we describe how the degenerate functions are determined; the methods are 
necessarily more a d  hoc than those available when the generators act on general 
representations. In 0 3 we deal with SU(3) and SO(5); in 0 4 we treat G 2  and SU(4). 
For each group considered we look at consequences for subgroup labelling operators 
(subgroup invariants other than Casimirs in the enveloping algebra of the group). 

2. How the generating functions are determined 

Straightforward (but tedious) algorithms exist for the determination of non-degenerate 
generating functions for a simple group G. An obvious procedure for determining 
degenerate generating functions is to construct the elementary tensors, and by allowing 
them to act on states transforming by the degenerate representations of interest, find 
the syzygies relating them. Much of this laborious task is avoided by exploiting a 
theorem of Kostant (1963). 

Kostant showed that the number of independent A tensors, other than scalars, in 
the enveloping algebra of a group G when it acts on the repsentation p, is equal to 
the multiplicity of the representation p in the Clebsch-Gordan series for AOp. 
According to a result of Weyl (1926) this multiplicity is the number of states of weight 
0 in the representation A, corrected for reflections in the hyperplanes A,  = -pI  - 1.  By 
choosing all the representation labels p, sufficiently large we see that, acting on general 
representations, there are as many independent A tensors in the enveloping algebra as 
there are states of weight 0 in the representation A. 

Now let the A tensors act on the degenerate representations p for which a (0 < a < I )  
of the representation labels p,, say p,, ,  . . . , pIo7 vanish. We may choose the non- 
vanishing p, large compared with the labels of A. Then we must consider only Weyl 
reflections in the c1 hyperplanes A, ,  = -1 ,  . . . , A,a  = -1, and other ‘reflections’ generated 
by them; these Weyl reflections are those of the rank-a subgroup H whose Dynkin 
diagram is obtained from that of G by removing vertices (and lines attached to them) 
corresponding to the non-vanishing labels p,. The number of independent A tensors 
is thus 
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In (2.1),  7, are  1 dummy variables which carry components of weight as their exponents; 
RH is half the sum of the positive roots of H, or,  equivalently, the sum of its fundamental 
dominant weights; SH are the Weyl reflections of H ;  ~ ~ ( 7 7 )  = E x A  TI* is the character 
and x A  the weights of the representation A ; the subscript 77" is an  instruction to retain 
only the coefficient of 77'. But (2.1) is just the number of H x U ( 1 )  x . .  . X U ( l )  
invariants in the representation A ,  where the 1-a groups U( 1) refer t o  components of 
weight in the directions orthogonal t o  those of H. If a generating function for 
G 2 H x U( 1) x , , , x U( 1 )  branching rules is known (if not it can be computed), its 
subgroup scalar part is a generating function for A tensors in the enveloping algebra 
acting on the degenerate representations p. 

A shortcoming of the above procedure is that it provides no information about the 
degrees of the surviving tensors or  about group invariants. It provides the desired 
generating function, i.e. the  degenerate analogue of ( l . l ) ,  with group invariants set 
equal t o  zero, and with U, the dummy variable carrying the degree as its exponent, 
set equal to unity. 

Further information about the degenerate generating function is obtained by 
considering its implication for subgroup invariants, including Casimirs, in the enveloping 
algebra. Knowledge of groupsubgroup branching rules for the degenerate group 
representations under consideration tells us which subgroup Casimirs a re  independent, 
and hence gives information about the generating function for subgroup scalars, 
including the degrees of some elements of the integrity basis. In each case only a few 
variants of the degenerate generating function for group tensors in the degenerate 
enveloping algebra a re  consistent with the form deduced from Kostant's theorem and 
with the fact that it must imply an integrity basis which is a subset of that for the 
non-degenerate case (or  other degenerate cases with fewer vanishing labels). Each 
possible form is converted to  the corresponding generating function for subgroup 
scalars with the help of the group-subgroup branching rules (for subgroup scalars) 
and compared with what is known about subgroup Casimirs. Different subgroups 
provide different restrictions on the degenerate generating function. Another useful 
fact is the known presence in the degenerate generating function of the denominator 
factor 1 - UAAd where A ,  is the adjoint representation (by which the generators 
transform). 

Sometimes the procedures of the preceding paragraph provide complete informa- 
tion about tensors in the degenerate enveloping algebra (except for group invariants). 
Any remaining ambiguities may be resolved by constructing relevant tensors, o r  selected 
parts of them, and applying them to appropriate degenerate states. Many examples 
a re  found in the two following sections. 

3. SU(3) and SO(5) 

We denote a A tensor of degree U in the enveloping algebra ( p ;  A )  = ( U ;  A I ,  A 2 ) .  The  
non-degenerate generating function is given by (I ,  equation (3.6)). In the degenerate 
enveloping algebra (acting on ( p , ,  0) or  (0,  p 2 )  representations) the number 
of independent A tensors is equal to the number of SU(2)XU(1) scalars in the 
representation A. The  relevant generating function is obtained from that for SU(3) 2 

SU(2) XU(1) branching rules (I ,  equation (2.3)) by setting N ,  = O  and retaining the 
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part of degree zero in N,; the result is (1 -A1A2)-'. Since it must contain the factor 
(1 - UAlAZ)-' (the adjoint representation is (1, l ) ) ,  we conclude that, SU(3) scalars 
aside, the desired degenerate generating function is just (1 - UAlA2)- ' .  

3.2. SO(5);  ( P I ,  0) 

The non-degenerate generating function for SO(5) is given by (I, equation (3.8)). In 
the degenerate enveloping algebra, acting on ( p l ,  0), the number of A tensors is equal 
to the number of SU(2) XU(1) scalars in the representatin A, where the SU(2) root 
is the second simple root of S 0 ( 5 ) ,  i.e. one of the longer roots. The generating function 
for SU(2) x U( 1) scalars is obtained from that for SO(5) 2 SU(2) X SU(2) branching 
rules (I, before equation ( 2 . 7 ~ ) )  by setting N1 = O  and retaining the even part in N2 
with N2 = 1; the result is [( 1 -A:)( 1 - A,)]-'. Since the degenerate generating function 
contains a factor (1 - UA;)-' ((2,O) is the adjoint representation), and since (2,Ol) 
and (2,02) are the only elementary tensors with A I  = 0, we conclude that the degenerate 
generating function is 

(1 + U2A,)[( 1 - UA:)( 1 - U'A;)]-' 
or else 

[( 1 - UA;)( 1 - U2A2)]-'. 

( 3 . 1 ~ )  

(3 . lb)  

To select one of these we consider their implication for SU(2) X SU(2) scalars. The 
SO(5) 2 SU(2) X SU(2) branching rules for (plr  0) representations are given by the 
generating function [( 1 - AIS)(  1 - A l  T)]- '  which implies s + t = A l  ( s  and t are twice 
the usual angular momentum label). The SU(2) Casimirs are linearly independent, 
but the square of either can be expressed as a polynomial in the other. The generating 
function for subgroup scalars in the enveloping algebra is thus 

( 1 + U,)( 1 - U,)-'. (3.2) 
The generating function for SO(5) 2 SU(2) X SU(2) scalars, obtained from the equation 
preceding (I, ( 2 . 7 ~ ) )  by setting N1 = N 2 = 0 ,  is (1 -Az)-', which means that ( 3 . 1 ~ )  or 
(3.1 b )  are converted to generating functions for subgroup scalars in the enveloping 
algebra by setting A I  = 0, A, = 1. Equation ( 3 . 1 ~ )  is correct, since it agrees with (3.2). 
The same conclusion is reached by considering scalars of the maximal subgroup SU( 2) x 
U(1) in the enveloping algebra. Their generating function is obtained from ( 3 . 1 ~ )  or 
(3.1 b) by keeping the part even in Al and even in A, and setting Al = A, = 1; the 
correct result [ ( l -  U ) ( l -  U')]-' is obtained only from ( 3 . 1 ~ ) .  

3.3. SO(5); (0, PZ) 

The number of A tensors in the degenerate enveloping algebra on (0, F ~ )  representa- 
tions is equal to the number of SU(2) X U(1) scalars in the representation A ;  this time 
SU(2) corresponds to the first (shorter) simple root and SU(2) X U( 1) is maximal in 
SO(5). The generating function for SU(2) XU(1) branching rules is (Sharp and Lam 
1969, case 4) 

[(1-A~SZ)(l-A~SZ~1)(l-A~Z2)(1-A~Z~2)]~'[(1-A~)~'+A~SZ(1 -AZS2)-']. 

(3.3) 
The subgroup scalar part of this is obtained by setting S = 0 and retaining the coefficient 
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of 2'; the result is [( 1 - A:)( 1 - A;)]-'. Comparison with the non-degenerate generat- 
ing function suggests that this can only imply 

[(l- UA:)( 1 - U2A;)]-' (3.4) 

for the degenerate generating function for tensors in the enveloping algebra. This 
implies (1 - U')-' and [( 1 - U ) (  1 - U2)]- '  respectively for SU(2) X SU(2) and SU(2) X 

U ( l )  scalars in the enveloping algebra, in agreement with what we infer from the 
degenerate branching rules 

3.4. SO(5) 2 SU(2) labelling operators 

A generating function for missing label operators for SO(5) 2 SU(2) is given by Gaskell 
et a1 (1978, equation (31)). It defines the operators by giving their degrees in the 
1 = 1 tensor and in the 1 = 3 tensor into which the SO(5) generators decompose. There 
are two missing labels and hence four algebraically independent missing label operators 
(Peccia and Sharp 1976). 

The generating function for SO(5) = SU(2) branching rules is given by Gaskel et 
a1 (1978, equation (23)). Setting A = 0 we obtain its SU(2) scalar part 

(1  +dlf212)[(l -A; ) ( l -AZ) ( l  -A?A:)]-'. (3.5) 

To get the generating function for subgroup scalars in the enveloping algebra acting 
on ( p , , O )  representations, we multiply (3.5) by ( 3 . 1 ~ )  in which A I  and A2 have been 
replaced by A;' and A;' respectively and retain the coefficient of AYA;. Omitting a 
factor (1  - U2)-'  corresponding to the SU(2) second degree Casimir, we obtain 

( ~ + u ~ + u ~ + u ~ ) [ ( ~ - u ~ ) ( ~ - u ~ I - ~  (3.6) 
as the generating function for missing label operators. We see that there are two 
functionally independent operators of degrees 4 and 6, as well as three more, of degrees 
4 ,7 ,9 ,  whose squares can be expressed as polynomials in the others (and in Casimirs). 
To identify these degenerate operators with those in the non-degenerate enveloping 
algebra (Gaskell et a1 1978, equation (31)), we note that there are three degree 4 
operators (1 ,3) ,  (2 ,2) ,  (3, l ) ,  four degree 6 operators (2 ,4) ,  (3 ,3) ,  ( 5 ,  l ) ,  (6, O) ,  three 
of degree 7, (3 ,4) ,  (4 ,3) ,  (5 ,2) ,  and seven of degree 9, (3,6), (4,5),  (5 ,4) ,  (6, 3)', 
(6,3),, (7,2), (8,l) .  The notation is ( t ,  I ) ,  where t and 1 are the degrees in the 1 = 3  
and 1 = 1 tensors respectively in the adjoint representation. In the degenerate case it 
is no longer meaningful to give the separate degrees t ,  1. The seven degree-9 operators 
become indistinguishable, as do the three of degree 7 and the four of degree 6. There 
is one linear relation connecting the three degree-4 operators, and the square of any 
one can be expressed as a polynomial in the others. 

To find the generating function for subgroup scalars acting on (0, p2),  we multiply 
(3.5) by (3.4) with the replacement A l  + A;', A 2 +  A;' and retain the part of degree 
0 in A l ,  A2. The result is, omitting (1 - U')-',  

(1 + u9)[(1 - u4)(1 - u6)]-l. (3.7) 
There is no labelling operator of degree 7 and the three of degree 4 are now 
indistinguishable. The operators defined by (3.7) are of interest in the problem of 
nuclear quadrupole vibrations. 
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4. G2 and SU(4) 

4.1.  G,; (pi, 0) 

The generating function for tensors in the non-degenerate enveloping algebra of G2  
is given by I, equation (4.9). Our notation is such that (1,O) is the septet, ( 0 , l )  the 
fourteen-plet representation. 

The number of independent A tensors in the degenerate enveloping algebra on 
( p 1 ,  0) representations is equal to the number of SU(2) XU( 1) scalars in the representa- 
tion A, where SU(2) refers to the second, i.e. longer, simple root. The generating 
function for G2  2 SU( 2) X SU( 2) branching rules is given by Gaskell and Sharp (1 98 1, 
equation (3.1)); the desired function for SU(2) X U(1) scalars is obtained by setting 
S = 0, retaining the even part in T and setting T = 1. The result is 

( 1 + AlA*)[( 1 - AI)( 1 - A:)( 1 - A,)( 1 -Ai)]-'. (4.1) 
Comparing this with the non-degenerate generating function, we conclude that the 
degenerate one is either 

(1 + U'AIAJ[(l -  U3A1)(1 - U"A:)(l- UAJ(1- UbA;)]-'  ( 4 . 2 ~ )  

or 

(1+  UcA,A2)(l+ U3Al)[(l- U2A:)(1- U4A:)(l- UA2)(1-UbA;)]-' 
(4.2b) 

where a = 2 or 4, b = 4 or 8, c = 5 or 7; we used the fact that the adjoint representation 
is (0, 1). 

The generating function for G2  2 SU(3) branching rules is given by Gaskell and 
Sharp (1981, equation (2.3)). For (pl,O) representations it is 

[( 1 - A l p ) (  1 -AI Q)(l- AI)]-' (4.3) 
where P, Q carry the SU(3) representation labels. There are no missing labels, and 
the SU( 3) representation labels, or Casimirs, are independent. The generating function 
for SU(3) scalars in the degenerate G2  enveloping algebra is therefore 

[(I  - v2)(i - u3)]-l. (4.4) 
The generating function for G 2 ~ S U ( 3 )  scalars is (1 -Al)- ' .  Therefore ( 4 . 2 ~ )  or 

(4.2b) is converted to the corresponding generating function for SU(3) scalars by 
setting A, = 1, A2 = 0. Only (4.2a), with a = 2, agrees with (4.4). The degrees b and 
c are not determined by considering subgroup Casimirs. The actual construction of 
the tensors is discussed in I. Replace the generators by states which transform by the 
adjoint representation; denote the highest component of the tensor as an unknown 
linear combination of those monomials in the states which have the necessary degree 
and weight. The coefficients are found by requiring that the generators corresponding 
to the simple roots annihilate the highest component. The states are then replaced by 
the corresponding generators and symmetrised as to order. Finally the highest com- 
ponent of the tensor may be applied to the lowest state of the degenerate representation 
(the work here is simplified by exploiting the fact that we need only to establish that 
the tensor in question does not vanish when applied to the degenerate representation; 
for example, of the 113 terms of ( 5 ,  l l ) ,  only six need be computed, namely those 
which are products of generators none of which annihilate the lowest state). We find 
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that (4,02) and ( 5 , l l )  do not vanish on ( p ,  0) representations. Hence we get finally 
the generating function for tensors in the degenerate enveloping algebra 

(1+ U5AlA2)[(l- U3A1)(l -  U2A;)(l-UA2)(l-  U4A;)]-'. (4.5) 

4.2. G2; (0, ~ 2 )  

The number of independent A tensors in the degenerate enveloping algebra on (0, p2)  
representations is equal to the number of SU(2) X U( 1) scalars in the representation 
A ,  where SU(2) refers to the first, i.e. shorter, simple root. The generating function 
for SU(2) XU( 1) scalars is obtained from that for G 2  2 SU(2) X SU(2) branching rules 
(Gaskell and Sharp 1981, equation (3.1)) by setting T = 0 ,  keeping the even part in 
S and putting S = 1. The result is 

( 1 + A:AZ)[( 1 - A:)( 1 -A:)( 1 - A2)( 1 - -A;)]-' 

which implies, for the degenerate generating function, 

( 1 +  UcA;A2)[(1- UaA;)( l -  U 3 A 3 ( l -  UA2)(1- UbA;)- ' ,  (4.6) 

where U = 2 or 4, b = 4 or 8, c = 5 or 8. The SU(3) representation labels are independent 
in (0, p 2 )  representations of G2  so again we expect (4.4) as the generating function 
for SU(3) scalars in the enveloping algebra. But (4.6) is converted to a generating 
function for SU(3) scalars by setting A l  = 1 ,  A2 = 0. Comparison with (4.4) shows 
a = 2, and leaves b and c undetermined. Proceeding as in the ( p I ,  0) case we find 
b = 4, c = 5 .  The generating function finally is 

(1 + U5A:A2)[(l - UzA:)(l - U3A;)(l - UAZ)(l- U4Ai)]-'. (4.7) 

4.3. Gz 2 SU(2)xSU(2)  labelling operators 

There are no missing labels for degenerate representations in the chain G2  3 SU(3). 
For G 2  2 SU(2) x SU(2) there is one missing label for degenerate representations 

( p i ,  0) or (0, p2).  Setting S = T = 0 in the generating function for G2  3 SU(2) X SU(2) 
branching rules (Gaskell and Sharp 1981, equation (3.1)) gives [(l -A;)( l  -A;)]-' as 
the generating function for SU(2) x SU(2) scalars in G2  representations; hence we 
have to keep the even part in Al and A2 of (4.5) or of (4.7) and set A1 = A2 = 1 to get 
the respective generating functions for subgroup scalars in the degenerate enveloping 
algebra of the group. For ( p i ,  O), or for (0, p2) ,  we get 

( 1  + u9)[(1 - u4)(1 - v6)1-1; (4.8) 
we have ignored a factor (1 - U2)-' corresponding to the Casimirs of SU(2) X SU(2). 
Equation (4.8) should be compared to the generating function for SU(2) X SU(2) 
scalars in the non-degenerate enveloping algebra of G2  (Gaskell et a1 1978, equation 
(30)). We can denote a scalar by ( a ,  b, c )  where a is its degree in the (3/2,1/2)  
SU(2)XSU(2) tensor, b and c its degrees in the s and t SU(2) generators which 
comprise the generators of G2. There are two scalars of degree 4, (2 ,2 ,0)  and (2,1,1) ;  
there are four of degree 6, (4 ,2 ,0) ,  ( 2 , 3 ,  l ) ,  (4 ,1 ,1)  and (4 ,0 ,2) ;  there are five of 
degree 9, (6 ,3 ,0) ,  (4 ,4 ,  11, (6 ,2 ,  l ) ,  (4 ,3 ,2) ,  (6 ,1 ,2) .  According to (4.8) the two 
degree-4 scalars become indistinguishable, as do the four of degree 6 ,  and the five of 
degree 9. We surmise that the degree-9 scalar is the commutator of those of degrees 
4 and 6. 
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We turn to S0(3),  the third maximal subgroup of G2. A generating function for 
G 2  3 SO(3) branching rules is given by Gaskell and Sharp (1981, figure 1). With L = 0 
(and A + A I ,  B+ A2) it becomes M(Al, A2,  O), a generating function for SO(3) scalars 
in G 2  representations. To convert it to a generating function for SO(3) scalars in a 
degenerate G2  enveloping algebra, multiply it by (4.5) or (4.7) in which the replacement 
A I  + A;', A 2 +  A;' has been made, and retain the part of degree 0 in A I  and in A2. 
We do not reproduce the result here (it is very complicated), but merely note that, 
apart from subgroup Casimirs, it has six denominator factors, implying six functionally 
independent subgroup labelling operators. 

4.4. SU(4); ( p I ,  0,O) and (O,O, p J  

The generating function for tensors in the non-degenerate enveloping algebra is given 
by I, equation (4.2). 

The number of independent A tensors in the degenerate enveloping algebra acting 
on ( p l ,  0,O) or (0 ,  0, F ~ )  representations is equal to the number of SU(3) XU( 1) scalars 
in the representation A. From the known branching rules for SU(4) =I SU(3) XU( 1)  
we get the generating function 
[ ( 1 - A I  PZ1'4)( 1 - A I  Z-'14) ( 1 - A2QZ1/') 

X ( 1  - A2PZ-'/2)( 1 - A3Z314)( 1 - A3QZ-'14)]-' (4.9) 
for SU(3) XU(1) tensors in SU(4) representations. P, Q carry the representation 
labels of SU( 3) and Z that of U( 1). The generating function for SU( 3) X U( 1)  scalars 
in SU(4) representations is obtained from (4.9) by setting P = Q = 0 and retaining the 
part of degree 0 in Z. The result is (1 - A1A3)-' .  Since (101) is the adjoint representa- 
tion of SU(4) we conclude that ( 1  - UAlA3)- '  is the generating function for tensors 
in the degenerate enveloping algebra. 

4.5. SU(4); (0, F.20) 

The number of independent A tensors in the enveloping algebra acting on degenerate 
representations (0, p2,  0) is equal to the number of SU(2) X SU(2) XU( 1) scalars in 
the representation A. An integrity basis for SU(4) =I SU(2) X SU(2) XU( 1) branching 
rules is given by Sharp (1972). The corresponding generating function is 

[(1-A~SZ)(1-AlTZ-')(1-A~Z2)(1-A2Z-2)(l-A~TZ)(l -A3SZ-')]-' 

X [ ( l  -A1113)-'+A2ST(l-A2ST)-'], (4.10) 

where A , ,  A,, A3 carry the SU(4) representation labels, S, T carry the SU(2) x SU(2) 
labels and Z carries the U( 1) lave1 as an exponent. The SU(2) X SU(2) X U( 1) scalar 
part of (4.10) is found by setting S = T = 0 and keeping the part of degree zero in Z. 
The result is 

[(l -A;)( l  -AIA3)]-'. (4.11) 

Comparing this with the non-degenerate generating function we conclude that, apart 
from scalars, the degenerate generating function is 

[( l-  U'AZ)(l- UAlA3)]-' (4.12) 
where a = 2 or 4. 
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Now the generating function (4.10) for SU(4) 2 SU(2) X SU(2) XU( 1) with A I  = 
Az = 0 reduces to [( 1 - A2Z2)( 1 - AzZ-2)( 1 - AZST)]-l, which shows that the generating 
function for SU(2) X SU(2) XU( 1) scalars in the enveloping algebra is 

(4.13) 

(one SU(2) Casimir and the generator whose eigenvalue is the U( 1) label). According 
to (4.1 1) we obtain a generating function for SU(2) X SU(2) XU( 1) scalars in the 
degenerate enveloping algebra by retaining the part of (4.12) even in A2 and of equal 
degree in A I ,  A3 and setting AI = A 2 =  A3 = 1. The result, [ ( l -  U") ( l -  U)]- ' ,  on 
comparison with (4.13), shows that the desired generating function for tensors in the 
degenerate enveloping algebra is 

(4.14) 

[( 1 - U ) (  1 - UZ)]-' 

[( 1 - U2A;)(1 - UAlA3)]-'. 

4.6. Su(4), (PI, PZ, O), (PI, 0,113)j  (0, PZ, ~ 3 )  

The number of independent A tensors in the enveloping algebra acting on representa- 
tions for which just one representation vanishes is equal to the number of SU(2)x 
U( 1) x U( 1) scalars in the representation A. The corresponding generating function is 
obtained from (4.9) by (see the discussion in P 3.1) retaining the part of equal degree 
in P and Q, with P and Q then set equal to unity, and of degree 0 in Z. The result, 

[ ( l  - A I A ~ ) ~ ( ~  -A;)]-'[(l -A:AJ-'+Api:(l -AZA:)-'], (4.15) 

implies the generating function 

[( 1 - UA1A3)( 1 - UbAlA3)(  1 - U"A;)]-'[( 1 - UcA:A2)-' + UcAzA:(l - UcA2A:)-'] 

(4.16) 

with a = 2 or 4, b = 2 or 3, c = 3, 4 or 5 .  To learn more, we consider the implication 
of (4.16) for SU(2) X SU(2) XU( 1) scalars in the degenerate enveloping algebra. 
According to the branching rules (4.10) the SU(2) X SU(2) XU(1) representations are 
all independent, and there are no missing labels; hence the generating function for 
SU( 2) X SU( 2) X U( 1) scalars is 

(4.17) 

According to (4.11) the SU(2) XSU(2) XU(1) scalar part of (4.16) is obtained by 
retaining the part even in Az  and of equal degree in A l ,  A3, with A I ,  A2, A3 then set 
equal to unity. The result [( 1 - U ) (  1 - U")(  1 - Ub)] implies a = b = 2 and tells nothing 
about c. No other information is obtained from scalars of other subgroups in the 
enveloping algebra. To determine c we constructed the highest components of the 
third-degree tensors (3;0,1,2) and (3; 2,1,0) (the notation is ( U ;  A I ,  AZ, A 3 )  where U is 
the degree and ( A )  is the representation); they were then applied to the lowest states 
of the degenerate representations with one vanishing label. The result is non-zero, 
from which we conclude that c = 3 and the degenerate enveloping algebra is described 
by the generating function 

[( 1 - U ) (  1 - U2)2]-1. 

(4.18) 
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4.7. SU(4) 3 SU(2) x SU(2) labelling operators 

The only maximal Lie subgroup of SU(4) with missing labels for degenerate representa- 
tions is SU(2) x SU(2), of interest in connection with the Wigner supermultiplet model 
of nuclear physics, where the SU(2) subgroups refer to spin and isospin. The only 
degenerate representations for which there are missing labels are those with one zero 
label; then there is one missing label. 

The generating function for SU(4) 3 SU(2) X SU(2) branching rules is given by 
Patera and Sharp (1980, equation (3.6)), with A 4 = 0 .  The subgroup scalar part is 
[( 1 -A:)( 1 -A:)( 1 -A:)]-'. Hence the generating function for missing label operators 
for the degenerate representations with one zero label is obtained from (4.18) by 
retaining the even part in each of A I ,  A*, A3  and then setting A l  = A2 = A3 = 1. The 
result is 

(4.19) 

We have omitted a denominator factor (1 - U 2 ) - 2  corresponding to the subgroup 
Casimirs. 

Quesne (1976) has given the missing label operators for the SU(4) 3 SU(2) x SU(2) 
problem. There is one of degree 3, (1 ,1 ,1) ;  three of degree 4, (2 ,2 ,0) ,  (2 ,0 ,2)  and 
(2 ,1 ,1) ;  four of degree 6, (3 ,2 ,  l ) ,  ( 3 ,1 ,2 ) ,  (4 ,2 ,0 )  and (4 ,0 ,2) ;  two of degree 9, 
(6 ,3 ,0)  and (6 ,0 ,3) .  The three integers which label a labelling operator are its degrees 
in the (1, l ) ,  (1, O) ,  ( 0 , l )  SU(2) xSU(2)  tensors which comprise the SU(4) generators. 
The three degree-4 scalars become indistinguishable on degenerate represenatations, 
as do the two degree 9; of the four labelling operators of degree 6, only two are 
linearly independent, and the square of one can be expressed in terms of the other. 

(1  + u3+ u6+ u9)[(1 - u 4 ) ( 1  - u6)i-l. 

5. Concluding remarks 

For any group-subgroup it is known (Peccia and Sharp 1976) that there are twice as 
many functionally independent missing label operators as the number of missing labels. 
Although the proof is valid only for general representations of the group in question, 
the examples of the present paper suggest it may be true also for degenerate representa- 
tions. With one vanishing representation label there is one missing label for SO(5) = 
SU(2), SU(4) 3 SU(2) X SU(2), G 2  2 SU(2) X SU(2) and three missing labels for G 2  3 

SO(3). In each of these cases we see that the generating function for missing label 
operators has twice as many denominator factors (i.e. there are twice as many func- 
tionally independent missing label operators) as there are missing labels. We have not 
been able to find a general proof of the conjecture. Incidentally, a formula for the 
number of internal labels of degenerate irreducible representations of compact semi- 
simple Lie groups has been given by Seligman and Sharp (1983). 

We hope in the future to extend our results to the other rank-3 groups, SO(7) and 
Sp(6), and possibly to SU(5). 

Acknowledgments 

We thank M Moshinsky, J Patera and S Okubo for helpful conversations. 



Degenerate enveloping algebras 

References 

Couture M and Sharp R T 1980 J. Phys. A: Math. Gen. 13 1925 
Gaskell R, Peccia A and Sharp R T 1978 J. Math. Phys. 19 727 
Gaskell R and Sharp R T 1981 J. Math. Phys. 22 2736 
Kostant B 1963 Am. J. Math. 85 327 
Okubo S 1975 J. Math. Phys. 16 528 
Patera J and Sharp R T 1980 J.  Phys. A: Math. Gen. 13 397 
Peccia A and Sharp R T 1976 J. Math. Phys. 17 1313 
Quesne C 1976 J. Math. Phys. 17 1452 
Seligman T H and Sharp R T 1983 J. Math. Phys. 24 769 
Sharp R T 1972 J.  Math. Phys. 13 183 
Sharp R T and Lam C S 1969 J. Math. Phys. 10 2033 
Weyl H 1926 Math. Z. 24 328, 277 

725 


